0=-16t^2+300t+200

Simple and best practice solution for 0=-16t^2+300t+200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+300t+200 equation:



0=-16t^2+300t+200
We move all terms to the left:
0-(-16t^2+300t+200)=0
We add all the numbers together, and all the variables
-(-16t^2+300t+200)=0
We get rid of parentheses
16t^2-300t-200=0
a = 16; b = -300; c = -200;
Δ = b2-4ac
Δ = -3002-4·16·(-200)
Δ = 102800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{102800}=\sqrt{400*257}=\sqrt{400}*\sqrt{257}=20\sqrt{257}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-300)-20\sqrt{257}}{2*16}=\frac{300-20\sqrt{257}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-300)+20\sqrt{257}}{2*16}=\frac{300+20\sqrt{257}}{32} $

See similar equations:

| (3/4)x=1230 | | -7(u+2)=2u+4 | | X+(2x)+(2x²)=100 | | 4x+2x-8=28 | | X+(2x)+((2x)x2)=100 | | x+2/2=6 | | a+5/7=2 | | a+57=2 | | X+(2x)+(2x+x)=100 | | 2X^2+y^2+4y+10=0 | | 10y-17=83 | | 10y-6=5y+10 | | 25.12=(6.28)r | | 7x+4/6=3 | | a*2+2a=3 | | b-43.4=-7,4 | | 6(x-4)=10 | | 19=8x-13 | | 5m-5=2+9m+5 | | 8.8=m-133,4 | | X/2+x/5=2 | | 8.8=m-13,4 | | -1.55487804878=n164 | | -m^2-5m-14=0 | | 43=x-2 | | 140x=180x-400 | | 10^x^+2+5=22 | | p/9.5=2.7897368421 | | 29x-1=6x+40 | | 10^x+2+5=22 | | 9x+78=3x | | -14.896=-r+11.704 |

Equations solver categories